Characterization of a temperature-sensitive mutant of vaccinia virus reveals a novel function that prevents virus-induced breakdown of RNA.
نویسندگان
چکیده
We have attempted to characterize the molecular defect in a temperature-sensitive mutant of vaccinia virus, ts22, which has an abortive late phenotype. At the nonpermissive temperature, ts22 displays normal viral protein synthesis until 8 h postinfection. Between 8 and 10 h after infection all viral protein synthesis ceases abruptly. Characterization of ts22 revealed that (i) primary transcription of late viral genes was not grossly impaired, (ii) late viral mRNA was biologically inactive since it could not stimulate in vitro protein synthesis, and (iii) extensive cleavage of rRNA and late viral mRNA occurred at the time that viral protein synthesis aborted in vivo. These data suggest that ts22 is defective in a function which prevents host rRNA and viral mRNA from being degraded. Inhibitor studies with cytosine arabinoside and cycloheximide showed that induction of and protection from rRNA breakdown occurred at approximately the same time during infection and required late viral gene expression. The viral protein synthesis pattern observed in vaccinia virus-infected cells treated with the drug isatin-beta-thiosemicarbazone was strikingly similar to that observed in ts22-infected cells at the nonpermissive temperature (J. Cooper, B. Moss, and E. Katz, Virology 96:381-392, 1979). Analysis of rRNA integrity in isatin-beta-thiosemicarbazone-treated, vaccinia virus-infected cells revealed extensive cleavage of rRNA, suggesting that the ts22 and drug inhibitor may function in the same pathway.
منابع مشابه
Vaccinia virus nucleoside triphosphate phosphohydrolase I controls early and late gene expression by regulating the rate of transcription.
We have carried out a detailed analysis of viral mRNAs and proteins produced in cultured cells infected with a temperature-sensitive vaccinia virus mutant (ts36) containing a modified nucleoside triphosphate phosphohydrolase I (NPH-I), a nucleic acid-dependent ATPase. Using a recombinant virus (ts36LUC) which expresses the luciferase marker, we showed in seven different cell lines that early ex...
متن کاملThe effect of temperature on the binding affinity of Remdesivir and RdRp enzyme of SARS-COV-2 virus using steered molecular dynamics simulation
The fatal SARS-COV-2 virus appeared in China at the end of 2019 for the first time. This virus has similar sequence with SARS-COV in 2002, but its infection is very high rate. On the other hand, SARS-COV-2 is a RNA virus and requires RNA-dependent RNA polymerase (RdRp) to transcribe its viral genome. Due to the availability of the active site of this enzyme, an effective treatment is targeting ...
متن کاملPoly(A) polymerase from vaccinia virus-infected cells. II. Product and primer characterization.
The product of the in vitro reaction of a vaccinia virus-induced poly(A) polymerase (see preceding paper) with ATP is shown to be poly(A) by nuclease resistance and by annealing with poly(U). Polyacrylamide gel electrophoresis indicates that the in vitro synthesized poly(A) is associated with large RNA which is sensitive to RNase. RNA which co-purifies with the virus-induced enzyme is similar t...
متن کاملDouble-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells.
The vaccinia virus E3L gene codes for double-stranded RNA (dsRNA) binding proteins which can prevent activation of the dsRNA-dependent, interferon-induced protein kinase PKR. Activated PKR has been shown to induce apoptosis in HeLa cells. HeLa cells infected with vaccinia virus with the E3L gene deleted have also been shown to undergo apoptosis, whereas HeLa cells infected with wild-type vaccin...
متن کاملCloning & Expression of F Protein Gene (HR1 region) of Newcastle Disease Virus NR43 Isolate from Iran in E.coli
Background and Aims: NDV (Newcastle Disease Virus) is one of the viruses that cause disease in avian with severe economic losses in the poultry industry in many countries. Fusion protein (F) which plays a major role in the virus pathogenicity contains several regions that have a role in the fusion process. Mutation in the sequence of HR1 & HR2 regions of this protein prevents fusion of the viru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 56 2 شماره
صفحات -
تاریخ انتشار 1985